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Abstract

Processes, occurring during exploration of gas-oil wells in frozen rock are simulated. A system of differential

equations, describing hydro and thermal dynamics of an ascending two-phase flow of a hydrocarbon system in a

vertical channel taking into account phase transitions and structure of a flow is developed. Kinetics of paraffin deposits

on internal walls of an elevating column of a well are considered. The effect of the heat exchange of a well within frozen

rock is developed using differential equations that describe the evolution of the radius of thermal influence of the well

and the radius of the melting zone. We conclude with numerical research of some preventive ways of dealing with

paraffin deposits.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many petroleum deposits are characterised by the

high content of heavy hydrocarbons (paraffin). The

motion of such petroleum from a reservoir up to oil

gathering systems is complicated by the formation of

deposits consisting of heavy hydrocarbon in pipes. Re-

sults of work of the various researchers show that the

paraffin deposits in a well are a collateral product of

those complex natural and physical–chemical processes,

which occur in petroleum as it rises to a surface. It is

important to take into account melting zones and their

influence on heat transfer. Substantiation of existing

methods and the development of new methods of deal-

ing with paraffin deposits in many respects depend on a

detailed study of the process of paraffin loss in close

interrelation with other processes, occurring in a well

and around it. Such multilateral research is possible only
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within the framework of mathematical models, taking

into account such interconnected circumstances as a

current of gas–liquid flow in a well, heat exchange of a

well with surrounding rock, and deposits of a solid

phase (paraffin) on the internal walls of an elevating

column.
2. A two-phase flow in an elevating column of a well

Processes occurring in active wells are so difficult and

multiform, that one must first develop initial balance

equations subject to various simplifications in each

particular case. The final equations, which are used for

the construction of appropriate mathematical models,

should be defined by characteristics of the investigated

process.

During the movement of a gas–liquid flow in a well

the characteristic size of particles (bubbles of a gas, drops

of a petroleum) is usually of substantially less diame-

ter than the elevating column and other macroscopic

scales of the considered flows. Therefore, as an elemen-

tary macrovolume for dealing with the appropriate
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equations, it is possible to choose a reasonably large

volume including particles of both phases. One may de-

scribe a gas–liquid mix as a set of two continua, filling the

same volume. At each point of volume, it is possible to

enter the macroscopic velocities of phases, pressure,

density of phases, and volumetric gas content, and to

apply the usual methods of differential and integral cal-

culations to the mathematical description of disperse

systems.

It is also necessary to note that under constant ex-

ternal conditions, the non-stationary phenomena in an

active well associated with start-up or transition to other

modes of operation, are relatively short-term. Therefore,

thermal and hydrodynamic modes of operation of a well

can be considered almost stationary, and one can as-

sume that the temperature in each section of a well is

identical for each phase (gas and liquid).

The two-phase mix consists of three components:

heavy, light, and some average component, both in a

liquid phase, and as a kind of vapor in a gas phase. The

heavy component can be present as a weighted solid

phase and as dissolved in a liquid.

Let us direct the axis Z vertically upwards (Fig. 1),

with its origin at the bottom of a well. Given the as-

sumptions, and neglecting change of weight of a flow

due to deposit of a solid phase, let us write an equation

of conservation of mass in a form [7]

ml þ mg ¼ m ¼ const; ð1Þ

klðgÞml þ kgðgÞmg ¼ mðgÞ; ð2Þ

where mi (i ¼ l; g) is the mass charge of the ith phase

through section of a well with co-ordinate z; klðgÞ and

kgðgÞ are the mass concentrations of a light component in

liquid and gas phases. The indices �l’ and �g’ pertain to

liquid and gas phases. Thus, Eq. (1) expresses conser-

vation of the flow of the entire mix, and (2) the con-

servation of the flow of a light component.
Fig. 1. A schematical section of a well: an elevating column (1),

an annular space (2), a casing column (3), a cement ring (4), well

environmental rock (5).
The equation of momentum for the entire mix in a

stationary situation can be written as

ml

dðvul Þ
dz

þ mg

dðvugÞ
dz

¼ �S
dp
dz

þ J lgðvul � vugÞ � fw � J lsðvls � vul Þ

� ðq0
l ð1� aÞ þ q0

gaÞSg: ð3Þ

Here q0
i (i ¼ l; g) is the true density of phases; p the

pressure; vui the momentum-average velocity of the ith
phase; S the area of section of a bore of a well; fw the

force of friction between a flow and by a wall of a

channel; J lg and J ls the intensities of gas delivery and

deposits, per unit of length of a channel; vls the velocity

of heavy component concerning the liquid phase; a
the volumetric gas content; g the acceleration due to

gravity.

During operation of the well the velocity of a gas–

liquid mix is usually considerably less than the velocity

of sound, and consequently the item in the left-hand part

of Eq. (3), connected with inertial effects, can be ne-

glected. In addition, it is possible to neglect also ‘‘jet’’

forces J lsðvls � vul Þ and J lgðvul � vugÞ, connected with phase

transitions. Then Eq. (3) will become [3,5]

dp
dz

¼ �Fw � q0
l ð1

�
� aÞ þ q0

ga
�
g ½Fw ¼ fw=S�; ð4Þ

Fw ¼ kw
4R

q0
l

ð1� uÞ2

1� a

 
þ q0

g

u2

a

!
w2 ½R ¼ R0 � dS �;

where u is the flow-rate void fraction; kw the factor of

friction between a flow and walls of a channel; w the

outflow-average velocity; R0 the radius of an elevating

column; dS the thickness of paraffin deposits. Volumetric

gas content differs from the flow-rate void fraction u
because of relative motion (slipping) of phases.

At cork and ring modes of flow for a factor of fric-

tion it is possible to use the expression

kw ¼ 0:067
158

Re

�
þ e
R

�0:2
Re
�

¼ 2q0
l ð1� aÞwR

ll

�
;

where ll is the dynamic viscosity of a liquid, e the size of
a roughness of a pipe.

For dependence of a volumetric gas content we used

a ratio offered by [1]

a ¼
0:833u; u6 0:9;

0:833uþ 0:167 1þ q0
l
ð1�uÞ
q0gu

� ��1
� �

u; u > 0:9;

8<:
u ¼ 1

 
þ

q0
gml

q0
lmg

!�1

:
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The equation of heat inflow is

mc
dT
dz

¼ mg

q0
g

dp
dz

þ ml llgðgÞ
�

� llgðlÞ
� dklðgÞ

dz

þ llgðgÞkgðgÞ
h

þ llgðlÞð1� klðgÞÞ
i dml

dz
� Qw; ð5Þ

mc ¼ mlcl þ mgcg; Qw ¼ 2pRqw:

Here T is the average temperature of a two-phase flow;

ci (i ¼ l; g) are the specific heat of the ith phase; llgðlÞ and
llgðgÞ the specific heat of evaporation of a liquid and al-

location of a dissolved gas, respectively; qw the heat flux,

per unit length of a well.

From (1) and (2) it follows

dml

dz
¼ ml

dklðgÞ
dz

�
þ mg

dkgðgÞ
dz

��
kgðgÞ
�

� klðgÞ
	
: ð6Þ

Substituting (6) in (5), we obtain

mc
dT
dz

¼ mg

q0
g

dp
dz

þ Al

dklðgÞ
dz

þ Ag

dkgðgÞ
dz

� Qw; ð7Þ

Al ¼ ml llgðgÞ
�

� llgðlÞ
�
þ llgml

kgðgÞ � klðgÞ
; Ag ¼

llgml

kgðgÞ � klðgÞ
;

llg ¼ llgðgÞkgðgÞ þ llgðlÞ 1
�

� klðgÞ
	
:

For dependence of the partial pressure of a light com-

ponent on its mass concentration in a liquid phase we

shall accept the Henry law

pðgÞ ¼ GðgÞklðgÞ; ð8Þ

where GðgÞ is the constant of Henry.

We shall set the partial pressure of vapor (average

component) equal the pressure of saturation at the

current temperature. The dependence of pressure on

temperature may be expressed by

pðlÞ ¼ pðlÞðT Þ ¼ pðlÞ� expð�T�=T Þ; ð9Þ

where pðlÞ� and T� are the empirical approximate para-

meters.

In addition, assume that the pressure in a gas phase

satisfies the law of Dalton

p ¼ pðlÞ þ pðgÞ; ð10Þ

pðlÞ ¼ q0
gðlÞRðlÞT ; pðgÞ ¼ q0

gðgÞRðgÞT ;

q0
gðlÞ þ q0

gðgÞ ¼ q0
g; RðlÞ 1

�
� kgðgÞ

	
þ RðgÞkgðgÞ ¼ Rg;

where q0
gðlÞ, q

0
gðgÞ and RðlÞ, RðgÞ are the true densities and

gas constants according to average and light compo-

nents in a gas phase.

On the basis of Eqs. (8)–(10), excepting pðlÞ and pðgÞ,
we get

p ¼ pðlÞðT Þ þ GðgÞklðgÞ; ð11Þ
pðlÞðT Þ
p

¼
RðlÞ 1� kgðgÞ
� 	

RðlÞ 1� kgðgÞ
� 	

þ RðgÞkgðgÞ
¼ B: ð12Þ

Differentiating (11) and (12) with respect to z, we have

dp
dz

¼ dpðlÞðT Þ
dz

þ GðgÞ
dklðgÞ
dz

;

dpðlÞðT Þ
dz

¼ p0ðlÞðT Þ
dT
dz

¼ B
dp
dz

þ B0p
dkgðgÞ
dz

;

p0ðlÞðT Þ ¼
dpðlÞðT Þ
dT

¼ T�pðlÞðT Þ
T 2

;

B0 ¼ dB
dkgðgÞ

¼ �
RðlÞRðgÞ

RðlÞ 1� kgðgÞ
� 	

þ RðgÞkgðgÞ

 �2 :

Consequently,

dklðgÞ
dz

¼ dp
dz

�
� p0ðlÞðT Þ

dT
dz

��
GðgÞ; ð13Þ

dkgðgÞ
dz

¼ p0ðlÞðT Þ
dT
dz

�
� B

dp
dz

��
B0p: ð14Þ

Eqs. (4), (7), (13) and (14) form a system of ordinary

differential equations, the solution of which yields the

pressure profile, temperature, and mass concentration of

components along the well.

It is necessary to set boundary conditions on the

bottom hole and head of the well for solving the system.

We assume that the output of well m is defined by res-

ervoir pressure pb and bottom hole pressure pf . Thus,

m ¼ Kðpb � pfÞ or m ¼ K 0ðp2b � p2f Þ:

The indicated equations correspond to two extreme

cases: first––when a product of a well is a liquid, sec-

ond––a gas.

Let us consider parameters K and K 0 as constants.

We shall consider the temperature on the bottom hole,

Tf , equal to the temperature of a reservoir. Concentra-

tion for a light component in liquid and gas phases

ðklðgÞf ; kgðgÞfÞ on a bottom hole of a well we shall define

through bottom hole pressure and temperature from

(11) and (12):

klðgÞf ¼
pf � pðlÞðT Þ

GðgÞ
; ð15Þ

pðlÞðTfÞ
pf

¼
RðlÞ 1� kgðgÞf
� 	

RðlÞ 1� kgðgÞf
� 	

þ RðgÞkgðgÞf
: ð16Þ

To find from (15) and (16) mass concentration klðgÞf and
kgðgÞf , we shall define by numerical integration of a sys-

tem of Eqs. (4), (7), (13) and (14) the distribution of

hydrodynamic parameters on a well and on a head.

For closing the system of Eqs. (4), (7), (13) and (14),

it is necessary to set the intensity of growth of deposits

of paraffin on the internal walls of an elevating column
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of a well, as well as the intensity of heat transfer, Qw, in

the surrounding rock.
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Fig. 2. The distribution of the average temperature of a gas–

liquid flow on a well depending on the type and condition of

substance in the annular space. Curves 1, 2 and 3 correspond to

cases when the annular space is filled: by a liquid (petroleum),

gas, and gas in a natural convection condition, respectively.
3. Heat exchange of a well with surrounding rock

The well cannot be considered as a thermodynami-

cally isolated system. For complete research of the heat

transfer of a two-phase flow in an elevating column,

consideration of processes of thermal interaction of well

flows with the surrounding medium is required. It is

necessary to note that temperature fields in a system

‘‘well-surrounding rock’’ are non-stationary in the gen-

eral case. However, some estimates show that at char-

acteristic rates of change of temperature fields for well

flows, the influence of their non-stationarity on a factor

of heat transfer from a flow to a wall of an elevating

column is not substantial. Therefore, the non-stationary

process of a heat exchange can be simulated by the usual

methods of stationary heat transfer.

To determine the intensity of a heat exchange be-

tween a flow and wall of a well (or solid phase on a wall

of a well), let us allocate two sites on a depth of a well.

On the first site, located between the bottom hole and

the section of well where temperature on the internal

wall To reaches temperature of crystallization for the

heavy component Te, the deposits of a solid phase takes

place. For heat flux we can write

qw ¼ bwðT � ToÞ;

where bw is the heat transfer coefficient, depending on

the structure of gas–liquid flow in the well, and on fea-

tures of flow in layers adjacent to the solid phase or walls

of a channel.

For definition of temperature of an internal wall of a

well it is necessary to consider the problem of an ex-

ternal heat exchange; and if the site of the section where

To reaches the temperature of crystallization for the

heavy component Te is above a base of permanent frost,

it is important to take into account the formation of

melting zones.

The second site is between the section of beginning of

formation of a solid phase and the head of a well. The

heat flux on this site of a well, where paraffin deposits

occur, is

qw ¼ bwðT � TrÞ; ð17Þ

where Tr is the temperature of an internal surface of a

solid phase.

By consideration of an unsteady mode of heat

transfer from an internal wall of a channel in layers of

ground [2] through which the well is drilled, usually heat

transfer is described with the help of a factor

b ¼ 1

RN
PN

i¼1 k
�1
i lnðRi=Ri�1Þ

½RN ¼ Rc�:
Here Ri is the external radius of the ith layer, ki the

thermal conductivity in ith layer, Rc the external radius

of the well; thus i ¼ 1 corresponds to an elevating col-

umn, i ¼ N the layer, contiguous to surrounding rock.

The account of natural convection of a medium in

the annular space can be made with the help of a mul-

tiplier for thermal conductivity of a medium in a speci-

fied volume

Nu ¼ 0:049ðGrPrÞ1=3Pr0:074;

where Nu, Gr, and Pr are numbers of Nusselt, Grashof,

and Prandtl.

For valuation of influence of various types of isola-

tion numerical accounts are conducted. Thus the fol-

lowing values are used: H ¼ 3000 m, pb ¼ 22:7 MPa,

pf jt¼0 ¼ 13:6 MPa, Tf ¼ 353 K, R0 ¼ 0:0315 m, Rc ¼
0:125 m, ml ¼ 0:463 kg/s, mg ¼ 0:083 kg/s, qo

l ¼ 850

kg/m3, ll ¼ 4:1� 10�3 kg/m s, lg ¼ 1:25� 10�5 kg/m s,

RðlÞ ¼ 52 m2/s2K, RðgÞ ¼ 520 m2/s2K, kl ¼ 0:13 kgm/s3K,

cl ¼ 2100 m2/s3 K, cg ¼ 2500 m2/s3 K, t�l ffi 2R=vl, l
lg

ðgÞ ¼
104 m2/s2 and e ¼ 1:5� 10�5 m. Here H -depth of a well.

We shall assume that the temperature on the external

border of a well is equal to the geothermal T ð1Þ
0 . Here, it

is necessary to note that this is the limiting case, when

the heaviest heat outflow from a well is realized. In the

general case, warming of the ground around the well is

taken into account.

It is apparent from Fig. 2 that filling the annular

space of a well with a substance with a smaller thermal

conductivity largely improves the temperature mode in

the bore of the well. If a gas in the annular space is in a

state of natural convection, it results in an increase of

thermal losses of the well. Using heat-insulation pipes
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Fig. 3. The distribution of the average temperature of a gas–

liquid flow in a well depending on the thickness dh of heat

isolating material (polyurethane foam, k ¼ 0:0067 W/mK) on

the external border of an elevating column. Curves 1, 2, 3

correspond to dh ¼ 0, 5, 10 mm, respectively; the remaining

volume of the annular space is filled by petroleum.
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Fig. 4. The dependence of the average temperature of a gas–

liquid flow in an elevating column on well head pressure at

various depths. Curves 1, 2 and 3 correspond to h ¼ 0, 200 and

500 m, respectively.
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(Fig. 3) permits improvement of temperature conditions

in the elevating column of the well. However, manu-

facturing the equipment is difficult and is not always

economically justified.

The temperature conditions in an elevating column

of a well largely depend on the condition of the sur-

rounding annular space. Except for heat exchange with

the surrounding rock, the thermal mode of operations of

a well is determined by the additional influence of two

main factors: by the velocity of flow and by the adiabatic

expansion of a two-phase mix. Reduction of well head

pressure decreases pressure on the bottom hole and in-

creases output of a well. But with reduction of heat

outflow, temperature losses of a gas–liquid flow, con-

nected with adiabatic expansion, grow. Therefore, at

some particular well head pressure temperature in a bore

of a well is highest (Fig. 4).

As mentioned above, for the specification of tem-

perature of the internal wall of the channel it is necessary

to consider the interaction of a well with the surround-

ing rock. For operation of a well in conditions of per-

manent frost, the interaction of a well with the

surrounding rock at certain depths is accompanied by a

melting of the frozen ground near the well. Therefore, in

the general case, it is necessary to include thermal con-

ductivity in phase transitions for the description of the

external heat exchange of the well.

Heat transfer between a well and surrounding rock in

a zone, located below the base of permanent frost, or in

a zone of permanent frost up to the moment of occur-

rence of melting rock tð1Þ is described by the heat

equation.
oT ð1Þ

ot
¼ vð1Þr�1 o

or
r
oT ð1Þ

or

� �
; 0 < t < tð1Þ; r > Rc;

ð18Þ

vðiÞ ¼ kðiÞ=qðiÞcðiÞ:

Here and below qðiÞ, cðiÞ, T ðiÞ, kðiÞ, vðiÞ are density, specific
heat, temperature, thermal conductivity and thermal

diffusivity coefficients. The superscript in brackets

(i ¼ 1) corresponds to parameters of the surrounding

rock in the zone, of permanent frost located below the

base, or parameters of frozen rock in a zone of perma-

nent frost; (i ¼ 2) corresponds to parameters of melting

rock.

On a border of contact of a well with a rock we shall

write the condition

�kð1Þ
oT ð1Þ

or
¼ bðT0 � T ð1ÞÞ; 0 < t < tð1Þ; r ¼ Rc: ð19Þ

At infinity, we shall require a condition of limitation of

temperature

oT ð1Þ=or ¼ 0; 0 < t < tð1Þ; r ¼ 1:

In addition, we shall write a condition of equality of heat

flows through the external and internal walls of a well:

kð1ÞRc

oT ð1Þ

or

� �
Rc

¼ ksR0

oTs
or

� �
R0

: ð20Þ

The described external thermal problem for these con-

sidered processes is effectively solved on the basis of an

integrated method [4], according to which the distribu-

tion of temperature around the well is stipulated as
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T ð1Þ ¼ C1 lnðr=RcÞ þ C2ðr=RcÞ þ C3; ð21Þ

with boundary conditions

T ð1Þ ¼ T ð1Þ
0 ; oT ð1Þ=or ¼ 0; r ¼ R�ðtÞ: ð22Þ

Parameters C1, C2 and C3 can be found by solving

function (21) subject to boundary conditions (19) and

(22).

The radius of thermal influence of the well R�ðtÞ is

determined on the basis of (18). Multiplying this equa-

tion by r and integrating from a surface of the well

(r ¼ Rc) up to the border of influence (r ¼ R�), we haveZ R�

Rc

r
oT ð1Þ

ot
dr ¼ vð1Þ

Z R�

Rc

o

or
r
oT ð1Þ

or

� �
dr:

Substituting for T ð1Þ the expression from (21), and taking

into account conditions (22), we have an ordinary dif-

ferential equation for determination of the radius of

thermal influence of a well

deRR�

dt
¼ 12ðvð1Þ=R2

cÞð1� eRR�Þ eRR�

�
� 1þ bð1Þ eRR� lnðeRR�Þ

h
� eRR� þ 1

i�.
3½bð1Þ
n

� 7=3� þ 3eRR�½2� bð1Þ�

þ 3eRR2
�½1� bð1Þ� þ 2½bð1Þ � 3� lnðeRR�Þ

� 2bð1ÞeRR3
� lnðeRR�Þ þ eRR3

�½3b
ð1Þ � 2�

o
; ð23Þ

eRR� ¼ R�=Rc; bðiÞ ¼ bRc=k
ðiÞ ði ¼ 1; 2Þ:

The above equations determine the thermal fields

around a well until the moment the temperature of the

rock on a surface of the well reaches the melting point of

frozen rock T ð1;2Þ. For the description of further process

of a heat exchange between a well and rock it is neces-

sary to take into account melting zones between the well

and the surface of a melting of frozen rock with radius

Rð1;2Þ. Pursuant to these external thermal problems

around the well we shall write

oT ð2Þ

ot
¼ vð2Þr�1 o

or
r
oT ð2Þ

or

� �
; t > tð1Þ Rc < r < Rð1;2Þ;

ð24Þ

oT ð1Þ

ot
¼ vð1Þr�1 o

or
r
oT ð1Þ

or

� �
; t > tð1Þ; Rð1;2Þ < r < 1;

ð25Þ

�kð2Þ
oT ð2Þ

or
¼ bðT0 � T ð2ÞÞ; t > tð1Þ; r ¼ Rc; ð26Þ

T ð1Þ ¼ T ð2Þ ¼ T ð1;2Þ; r ¼ Rð1;2Þ; ð27Þ

�kð2Þ
oT ð2Þ

or
þ kð1Þ

oT ð1Þ

or
¼ qð1Þlð1Þ

dRð1;2Þ

dt
r ¼ Rð1;2Þ; ð28Þ

kð2ÞRc

oT ð2Þ

or

� �
Rc

¼ ksR0

oTs
or

� �
R0

; ð29Þ
oT ð1Þ=or ¼ 0; r ¼ 1;

where lð1Þ is the melting point of frozen rock.

Similarly, for T ð1Þ the following ordinary differential

equation results from (22), (25) and (27)

� deRRð1;2Þ

dt

eRRð1;2Þ

2eRR�
ln
eRR�eRRð1;2Þ

 
�
eRRð1;2Þ

4eRR�
þ
eRRð1;2Þ2

3eRR2
�
�

eRR�

12eRRð1;2Þ

!

þ deRR�

dt

eRRð1;2Þ2 þ eRR2
� þ eRR�eRRð1;2Þ

6eRR2
�

ln
eRR�eRRð1;2Þ

 
� 1

4
þ
eRRð1;2Þ2

4eRR2
�

!

¼ vð1Þ

R2
c
eRR�

ln
eRR�eRRð1;2Þ

 
þ
eRRð1;2ÞeRR�

� 1

!
; ð30Þ

eRRð1;2Þ ¼ Rð1;2Þ=Rc:

Temperature structures in a melting zone are defined on

the basis of the method of consecutive shift of stationary

states [6], according to which the distribution of tem-

perature satisfies the equation

r�1 o

or
r
oT ð2Þ

or

� �
¼ 0; Rc < r < Rð1;2Þ:

Incorporating boundary conditions (26) and (27), we

have

T ð2Þ ¼ T ð1;2Þ þ
bð2ÞðT0 � T ð1;2ÞÞ ln eRRð1;2ÞRcr�1

� �
1þ bð2Þ ln eRRð1;2Þ

� � : ð31Þ

On the basis (21) and (31) we have

oT ð1Þ

or

� �
Rð1;2Þ

¼ T ð1Þ
0 � T ð1;2Þ

Rc

�
eRR�=eRRð1;2Þ � 1eRR� ln eRR�=eRRð1;2Þ

� �
þ eRRð1;2Þ � eRR�

;

oT ð2Þ

or

� �
Rð1;2Þ

¼ T ð1;2Þ � T0
Rc

bð2Þ

eRRð1;2Þ bð2Þ ln eRRð1;2Þ
� �

þ 1
n o :

Substituting the indicated expressions in the condition

(28) we obtain the following ordinary differential equa-

tion

deRRð1;2Þ

dt
¼
kð2Þ T0�T ð1;2Þ� 	

R2
cq

ð1Þlð1Þ
bð2Þ

eRRð1;2Þ bð2Þ ln eRRð1;2Þ
� �

þ1
n o

þ
kð1Þ T ð1Þ

0 �T ð1;2Þ
� �
R2
cq

ð1Þlð1Þ
eRR�=eRRð1;2Þ�1eRR� ln eRR�=eRRð1;2Þ

� �
þ eRRð1;2Þ� eRR�

:

ð32Þ

Eqs. (30) and (32) will form a system for determining

R�ðtÞ and Rð1;2ÞðtÞ.
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4. Kinetics of paraffin deposits

The operation of gas-oil and gas condensate wells is

usually complicated by the occurrence of two types of

deposits. The first type of deposit is gas hydrate. A

necessary condition for the formation of such deposits is

the availability of water (or its vapor) and hydrocarbon

components, which when dissolved in water at certain

temperatures and pressure will form a solid phase [8].

The second type of deposit, which is usually observed

during operation of gas-oil wells, represents high-mo-

lecular hydrocarbon systems, which we call paraffin

deposits. For formation of paraffin deposits, the two-

phase mix must contain heavy (high-molecular) com-

ponents (the direct precursors of deposits). In addition,

the temperature in a well (especially near its walls)

should allow the existence of a solid phase. In particular,

the temperature should becomes less or equal to the

temperature of crystallization of the heavy components.

The literature shows that the most probable mecha-

nism of formation of paraffin deposits is crystallization.

Diffusion and thermodiffusion carry the heavy hydro-

carbon component to the well wall resulting in forma-

tion and growth of the solid phase on this wall. The

intensity of paraffin deposits depends on the flow ve-

locity or output of the well. Therefore, in general, it is

necessary to use the following expression for an evalu-

ation of the boundary ‘‘gas–liquid flow––paraffin’’

q0
s

ods
ot

¼ �js � j0sðwÞ ðR ¼ R0 � dsÞ:

Here js is the intensity of formation of paraffin con-

nected with mass transfer of heavy components to the

surface of the solid phase and heat exchange of the well

with the surrounding rock; j0sðwÞ is the intensity of ab-

lation of paraffin deposits by gas–liquid flow. We will

assume

j0sðwÞ ¼ cwjwj;

where c-factor of proportionality, which must be cal-

culated experimentally. Such data are available in the

literature.

We assume the formation of a solid phase (paraffin)

is basically defined by loss of fluidity of a liquid near the

walls because of its stagnation with decreasing temper-

ature (j0sðwÞ ¼ 0). This assumption means that the liquid

contains a surplus of heavy components, inducing the

solid phase, and the intensity of the process of deposit-

ing a solid phase is defined by the condition of the

thermal balance on a surface of deposits

llsjs ¼ �qw � ks
oTs
or

� �
R

;
ods
ot

¼ js
q0
s

: ð33Þ

We shall assume that the internal surface of a solid

phase is an isothermal surface, the temperature of which,
Tr, is equal to the temperature of crystallization, Te, for a
hydrocarbon mix flowing in the well.

As the increase of a layer of paraffin on a wall of a

well occurs reasonably slowly (the characteristic time of

a complete closing of a carrying section of a well is

considerably more than the characteristic time of es-

tablishment of stationary structure temperatures inside

the solid phase ts ¼ d2s=vs, vs is the thermal diffusivity of

a paraffin), we shall suggest that the distribution of

temperature in the firm layer Ts for each moment of time

satisfies the equation

r�1 o

or
vsr

oTs
or

� �
¼ 0 ðR < r < R0Þ: ð34Þ

On the basis of (34) we shall state the following ex-

pression for the distribution of temperature in a firm

layer

Ts ¼ T0 þ
Tr � T0
lnðR=R0Þ

lnðr=R0Þ: ð35Þ

In view of expressions (17) and (35), Eq. (33) can be

transformed to

q0
s l

ls ods
ot

¼ �bwðT � TrÞ þ bsðT0 � TrÞ; ð36Þ

bs ¼
ks

R lnðR=R0Þ
:

The above description of the process of deposit of a firm

phase assumes that its intensity is completely defined by

the condition of the thermal balance. In the more gen-

eral case, the intensity of deposit depends on a mass

transfer of a heavy component to a surface of a solid

phase. Therefore, the intensity of formation of a solid

phase can be described by

js ¼
q0
lDSh
2R

klðsÞ
�

� klðsÞe
	
;

Sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rvl=D

p
;

where D is the coefficient of diffusion; klðsÞ and klðsÞe are
the mass average concentration of a heavy component in

a liquid and equilibrium concentration, respectively, of a

heavy component at a temperature equal to the tem-

perature of a surface of the solid phase. The Sherwood

number, Sh, here assumes that the mass transfer occurs

in a thin diffusion boundary layer with thickness dðDÞ

(dðDÞ � R) near to a border ‘‘solid phase-liquid’’. The

characteristic thickness of this layer is

dðDÞ ffi
ffiffiffiffiffiffiffiffiffiffiffi
D � t�l

p
;

where t�l is the some characteristic time of contact of a

particle of a liquid with a wall of a channel and which, in

turn, can be given by t�l ffi 2R=vl.
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Fig. 6. The distribution of the average temperature of a gas–

liquid flow on the top site of a well depending on thickness of

deposit of paraffin, the structure of which is shown in Fig. 5.
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On the basis of the Schreder equation relating klðsÞe
and Tr, it is possible to write

klðsÞe ¼ k�lðsÞe expð�T �
s =TrÞ;

where k�lðsÞe and T �
s are the empirical approximation

parameters.

We assume that the dependence of klðsÞe on Tr is lin-

ear. Therefore, the intensity of formation of a solid

phase will be

q0
s

ods
ot

¼ KmðTe � TrÞ; ð37Þ

Km ¼ q0
l DSh
2R

oklðsÞe
oTr

� �
Te

:

Eliminating Tr from (36) and (37), we may write

ods
ot

¼ �bwðT � TeÞ þ bsðT0 � TeÞ
q0
s l

ls þ ðbw � bsÞ=Km½ � :

The temperature of a surface of a solid phase can be

determined from the expression

Tr ¼
bwT þ KmllsTe � bsT0

bw þ Kmlls � bs

:

On the basis of (20), (21) and (35), it is possible to de-

velop an expression for temperature on the internal

surface of a wall of a well depending on the thickness of

deposits and the radius of influence of a well in a zone

below the permanent frost line (Fig. 5)

T0 ¼ Tr �
B1 T ð1Þ

0 � Tr
� �

lnðR=R0Þ

ks=k
ð1Þ � B1 lnðR=R0Þ

;

1 2

5 10 150 δS , mm

2.2 
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2.6 

2.0 
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43

Fig. 5. The profile diagram of deposits of paraffin on internal

walls of an elevating column in various moments of time.

Curves 1, 2, 3 and 4 correspond to t ¼ 1, 4, 7 and 8 days, re-

spectively.
B1 ¼
bð1Þ eRR� � 1
� �

eRR� � 1þ bð1Þ eRR� lnðeRR�Þ � eRR� þ 1
� � :

In a zone of permafrost, the expression for temperature

on the internal surface of a channel of a well can be

written, using (29), (31) and (35), as follows

T0 ¼ Tr þ
bð2Þ T ð1;2Þ � Tr
� 	

lnðR=R0Þ
bð2Þ lnðR=R0Þ � ks 1þ bð2Þ lnðeRRð1;2ÞÞ

n o
=kð2Þ

:

Numerical calculations conducted on the kinetics of

paraffin deposits yielded the following parameters: Te ¼
303 K, q0

s ¼ 900 kg/m3, ks ¼ 0:27 kgm/s3 K, lls ¼ 2� 105

m2/s2, where q0
s , ks and lls are the true density, thermal

conductivity and heat of crystallization of paraffin (Fig.

6).

Obviously, there are other competitive factors,

namely: the pressure is increased with growth of deposit

and it results, at constant well head pressure and tem-

perature in a bottom hole of a well, in a decrease of

temperatures. In addition, the process of paraffin deposit

leads to the reduction of the cross-section of a channel

and accordingly to a decrease of output of a well. The

more slowly a gas–liquid flow moves, the larger the

quantity of heat passed to the surrounding mountain

rock for a given time of rise to head.
5. Conclusion

The main results of this work may be stated as fol-

lows.
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(1) A mathematical model of gas-oil well exploration is

developed, within the framework of which such

complex interconnected circumstances as hydro

and heat dynamics of a gas–liquid flow in a vertical

channel with variable section, deposits of paraffin on

internal walls of elevating column of a well, and heat

exchange of a well with surrounding rock with for-

mation of melting zones are discussed.

(2) Within the framework of the constructed model,

numerical calculations establish that non-monoto-

nous dependence of a temperature mode in an

elevating column from well head pressure of a well

exists.

(3) Paraffin deposits not only do not render an apprecia-

ble heat-isolating effect on rates of growth, but on

the contrary make this process more intense with

the decrease of temperatures in the elevating column

due to increases of pressure on a well and reduction

of cross-sectional areas.
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